Биохимическое потребления кислорода (бпк). Биохимическое потребление кислорода в водах. методика выполнения измерений скляночным методом Бпк в сточных водах

В природной воде водоемов всегда присутствуют органические вещества. Их концентрации могут быть иногда очень малы (например, в родниковых и талых водах). Природными источниками органических веществ являются разрушающиеся останки организмов растительного и животного происхождения, как живших в воде, так и попавших в водоем с листвы, по воздуху, с берегов и т.п. Кроме природных, существуют также техногенные источники органических веществ: транспортные предприятия (нефтепродукты), целлюлозно-бумажные и лесоперерабатывающие комбинаты (лигнины), мясокомбинаты (белковые соединения), сельскохозяйственные и фекальные стоки и т.д. Органические загрязнения попадают в водоем разными путями, главным образом со сточными водами и дождевыми поверхностными смывами с почвы. В естественных условиях находящиеся в воде органические вещества разрушаются бактериями, претерпевая аэробное биохимическое окисление с образованием двуокиси углерода. При этом на окисление потребляется растворенный в воде кислород. В водоемах с большим содержанием органических веществ большая часть РК потребляется на биохимическое окисление, лишая таким образом кислорода другие организмы. При этом увеличивается количество организмов, более устойчивых к низкому содержанию РК, исчезают кислородолюбивые виды и появляются виды, терпимые к дефициту кислорода. Таким образом, в процессе биохимического окисления органических веществ в воде происходит уменьшение концентрации РК, и эта убыль косвенно является мерой содержания в воде органических веществ. Соответствующий показатель качества воды, характеризующий суммарное содержание в воде органических веществ, называется биохимическим потреблением кислорода (БПК).

Определение БПК основано на измерении концентрации РК в пробе воды непосредственно после отбора, а также после инкубации пробы. Инкубацию пробы проводят без доступа воздуха в кислородной склянке (т.е. в той же посуде, где определяется значение РК) в течение времени, необходимого для протекания реакции биохимического окисления. Так как скорость биохимической реакции зависит от температуры, инкубацию проводят в режиме постоянной температуры (20±1)°С, причем от точности поддержания значения температуры зависит точность выполнения анализа на БПК. Обычно определяют БПК за 5 суток инкубации (БПК 5), однако содержание некоторых соединений более информативно характеризуется величиной БПК за 10 суток или за период полного окисления (БПК 10 или БПК полн соответственно). Погрешность в определении БПК может внести также освещение пробы, влияющее на жизнедеятельность микроорганизмов и способное в некоторых случаях вызывать фотохимическое окисление. Поэтому инкубацию пробы проводят без доступа света (в темном месте).

Таблица. Величины БПК 5 в водоемах с различной степенью загрязненности

Степень загрязнения (классы водоемов)

БПК 5 , мг 0 2 /дм 3

Очень чистые

Умеренно загрязненные

Загрязненные

Очень грязные

Для водоемов, загрязненных преимущественно хозяйственно-бытовыми сточными водами, БПК 5 составляет обычно около 70% БПК П.

Определение БПКп в поверхностных водах используется с целью оценки содержания биохимически окисляемых органических веществ, условий обитания гидробионтов и в качестве интегрального показателя загрязненности воды. Необходимо использовать величины БПК5 при контроле эффективности работы очистных сооружений.

В зависимости от категории водоема величина БПК 5 регла­ментируется следующим образом: не более 3 мг О 2 /дм 3 для во­доемов хозяйственно-питьевого водопользования и не более 6 мг О 2 /дм 3 для водоемов хозяйственно-бытового и культур­ного водопользования. Для морей (I и II категории рыбохозяйственного водопользования) пятисуточная потребность в кислороде (БПК 5) при 20°С не должна превышать 2 мг О 2 /дм 3 .

Полным биохимическим потреблением кислорода (БПК П) считается количество кислорода, требуемое для окисления органических приме­сей до начала процессов нитрификации. Количество кислорода, расхо­дуемое для окисления аммонийного азота до нитритов и нитратов, при определении БПК не учитывается. Для бытовых сточных вод (без су­щественной примеси производственных) определяют БПК 20 , считая, что эта величина близка к БПК П.

Полная биологическая потребность в кислороде БПК П для внутренних водоемов рыбохозяйственного назначения (I и II категории) при 20°С не должна превышать 3 мг О 2 /дм 3 .

Пробоотбор и подготовка воды к анализу

Для проведения физико-химического анализа воды необходимо правильно провести пробоотбор. В зависимости от цели исследования проба воды для анализа может быть получена несколькими способами:

    путем однократного отбора всего количества воды, нужного для анализа;

    смешением проб, отобранных через определенные промежутки времени в одном месте исследуемого водоема;

    смешением проб, отобранных одновременно в раз­ных местах исследуемого водоема.

При отборе проб воды используют посуду из бес­цветного стекла или полиэтилена марок, разрешенных для контакта с питьевой водой. Посуда должна быть тщательно вымыта моющими средствами, многократ­но ополоснута водопроводной и дистиллированной водой, а непосредственно перед забором воды посуду несколько раз ополаскивают исследуемой водой. Проб­ки желательно использовать стеклянные или полиэти­леновые; корковые или резиновые пробки обертывают полиэтиленовой пленкой.

На практике удобно пользоваться банкой или бу­тылью. В местах с затрудненным доступом к воде бан­ку или бутыль можно прикрепить к шесту. Для взятия проб с определенной глубины используются батомет­ры (рисунок). При отсутствии данного прибора можно сделать самодельный батометр, состоящий из бутыли (1л), с прикрепленным к ней тонким прочным шнуром необходимой длины. Бутыль закрывают пробкой со шнуром и помещают в футляр, имеющий груз и петлю. К петле привязывают веревку с отметками, указываю­щими глубину погружения. На нужной глубине выдер­гивают пробку из бутыли и после наполнения емкости водой и поднимают ее.

Отбор проб воды на проточных водоемах произво­дится в 1 км выше ближайшего по течению пункта водо­пользования (водозабор для питьевого водоснабжения, места купания, организованно­го отдыха, территория населен­ного пункта), а на непроточных водоемах и водохранилищах - в 1 км в обе стороны от пункта водопользования.

Обычно пробы в створе отбирают в трех точках (у обо­их берегов и в фарватере); при ограниченных же техничес­ких возможностях или на не-

больших водоемах допускает­ся отбор проб в одной-двух точках (в местах наиболее сильного течения). Чаще все­го пробы отбирают в 5 - 10 м от берега на глубине 50 см. Объектом особого внимания должны стать загрязнен­ные струи.

Если на реке имеется сброс сточных вод от промыш­ленных предприятий, стоки животноводческих ферм и т. д., то отбор проб воды проводят ниже сброса на 500 м, что позволяет контролировать степень загрязне­ния воды в реке сточными водами (для сравнения сле­дует взять пробу на 500 м выше сброса сточных вод).

Если предполагается, что в результате сброса сточ­ных вод в придонных слоях накапливаются оседающие вредные вещества, которые могут стать источником вторичного загрязнения воды, отбирают придонные пробы на расстоянии 30 - 50 см от дна.

В водохранилищах, озерах, прудах, где течение воды резко замедленно, качество воды может быть неодно­родным на различных участках (здесь возможно возник­новение вторичных источников загрязнения), поэтому в этих водоемах обычно берут серию проб по глубине.

Сразу же после взятия пробы необходимо сделать запись об условиях сбора, направлении ветра, указать дату и час отбора воды.

Подготовка воды к анализу

Для получения достоверных результатов анализ следует проводить возможно быстрее. В воде происхо­дят процессы окисления-восстановления, физико-хи­мические, биохимические, вызванные деятельностью микроорганизмов, сорбции, десорбции, седиментации и т. д. Могут изменяться и органолептические свойства воды - запах, цвет и др. Некоторые вещества способ­ны адсорбироваться на стенках сосудов (железо, алю­миний, медь, кадмий, марганец и др.), а из стекла бу­тылей могут выщелачиваться микроэлементы. При невозможности исследовать воду в установленные для соответствующих показателей сроки (таблица) ее ох­лаждают или консервируют.

Биохимические процессы в воде можно замедлить, охладив ее до 4°С. В этих условиях медленнее разру­шаются и многие органические вещества.

Универсального консервирующего средства не су­ществует, поэтому пробы для анализа отбирают в не­сколько бутылей. В каждой из них на месте отбора пробу консервируют, добавляя различные реагенты (таблица). Подготовка воды непосредственно перед анализом заключается в следующем:

Консервированные пробы при необходимости ней­трализуют, а охлажденные нагревают до комнат­ной температуры (не на нагревательном приборе);

Если определению мешают мутность и цветность, то проводят специальную подготовку: пробы филь­труют, отстаивают или коагулируют. Коагуляция проводится добавлением 5 мл суспен­зии гидроксида алюминия на 1 л воды, после чего смесь хорошо взбалтывают и дают отстояться.

Находящиеся в природной и питьевой воде заг­рязняющие вещества имеют, как правило, очень ма­ленькие концентрации. Для того чтобы определить присутствие этих загрязнителей следует провести концентрирование этих примесей.

Если при анализе проводилось концентрирование пробы, то при последующих расчетах необходимо учи­тывать объем исходного образца воды.

Метод определения концентрации РК

      Определение концентрации РК в воде проводится методом Винклера, который широко используется для санитарно-химического и экологического контроля.

3.2 Метод определения концентрации РК основан на способности гидроксида марганца (II) окисляться в щелочной среде до гидроксида марганца (IV), количественно связывая при этом кислород. В кислой среде гидроксид марганца (IV) снова переходит в двухвалентное состояние, окисляя при этом эквивалентное связанному кислороду количество йода. Выделившийся йод титруют раствором тиосульфата натрия в присутствии крахмала.

Определение РК проводится в несколько этапов. Сначала в анализируемую воду добавляют соль Мn (II), который в щелочной среде реагирует с растворенным кислородом с образованием нерастворимого гидроксида Мn (IV) по уравнению:

2Мn + О+4ОН= 2МnО(ОН).

Таким образом, кислород «фиксируется» в пробе (количественно связывается). Кислород - неустойчивый компонент химического состава воды, поэтому фиксация должна быть проведена сразу после отбора пробы.

2МnО(ОН)+ 6J +6Н= Мn + 3J + ЗНО.

Затем свободный йод титруют раствором тиосульфата натрия в присутствии крахмала, который добавляют в качестве индикатора для определения точки эквивалентности. Реакции описываются уравнениями:

J+2SO=2J+SO

J + крахмал
синий краситель
.

В точке эквивалентности происходит обесцвечивание раствора.

3.3 По результатам титрования определяют абсолютное содержание РК в воде в мг О/л и степень насыщения воды кислородом, котораязависит от температуры воды в момент отбора пробы и атмосферного давления.

      Метод определения биохимического потребления кислорода основан на способности микроорганизмов потреблять растворенный кислород при биохимическом окислении органических и неорганических веществ в воде.

Биохимическое потребление кислорода определяют количеством кислорода в мг/дм, которое требуется для окисления находящихся вводе углеродсодержащих органических веществ, в аэробных условиях в результате биохимических процессов.

3.5 По разности содержания РК в воде до и после инкубации пробы в кислородной склянке при стандартных условиях (продолжительность инкубации - 5 суток при температуре 20±1°С без доступа света и воздуха) определяют БПК. При этом пробу воды предварительноаэрируют для насыщения кислородом.

3.6 В поверхностных водах суши величина БПКколеблется впределах от 0,5 до 5 мг О/л, она подвержена природным и суточнымизменениям, которые в основном зависят от изменения температуры и от исходной концентрации растворенного кислорода, связанные с физиологической и биохимической активностью микроорганизмов. Значительные изменения БПК определяются степенью загрязненности.

3.7 Мешающее влияние на аналитическое определение РК могут оказывать вещества (взвешенные и окрашенные, биологически активные, восстановители, реагирующие с выделившимся йодом, окислители, выделяющие йод из йодида калия) в концентрациях, встречающихся только в сточных и загрязненных поверхностных водах.

3.8 Точность выполнения анализа определяется:

    точностью отбора пробы;

    качеством растворов, которое может ухудшиться при их загрязнении, хранении в негерметично закрытых склянках, в теплом месте или на свету, а также при хранении растворов слишком продолжительное время (без проведения периодического контроля);

    чистотой используемой посуды для отбора проб и выполнения нализов;

    полнотой учета мешающих примесей, которые могут присутствовать в анализируемой воде;

    ошибками при титровании.

Меры безопасности

      При работе с комплектом в полевых и лабораторных условиях руководствуются основными правилами техники безопасности, предусмотренными для химико-аналитических работ.

4.2 Методика выполнения анализа предусматривает использование щелочного раствора йодида калия и раствора серной кислоты. Следует избегать попадания щелочного и сернокислотного растворов на слизистые оболочки, кожные покровы, одежду, обувь, оборудование и т.п. При попадании на кожу или слизистые оболочки следует быстро и обильно промыть водой, при необходимости обратиться к специалисту в медицинское учреждение.

4.3. Едкие вещества требуют особого обращения:

    хранения в специальном месте, недоступном для неспециалистов:

    использования их только оператором (преподавателем);

    учета при расходовании.

Подготовка к проведению анализа

Подготовка к проведению анализа включает: проверку целостности мерной и др. посуды; проверку наличия растворов в склянках; приготовление растворов.

Раствор крахмала неустойчив при хранении. Для приготовления свежего - растворите содержимое капсулы в 10-15 мл холодной дистиллированной воды, полученную суспензию постепенно прилейте к 35-40 мл кипящей дистиллированной воды и кипятите 2-3 минуты. Раствор охладите.

По мере использования рабочего раствора тиосульфата натрия (0,02 моль/л экв.) приготовьте новый. Отберите мерной пипеткой 20,0 мл раствора тиосульфата натрия (0,1 моль/л экв.), поместите в мерную колбу вместимостью 100 мл, доведите объем раствора до метки дистиллированной водой, перемешайте раствор.

Оборудование и реактивы: Барометр любого типа; груша резиновая или медицинский шприц; колба коническая вместимостью 250–300 мл; склянка кислородная калиброванная (100–200 мл) с пробкой; мешалка (стеклянные шарик, палочка и т.п.) известного объема; пипетки мерные на 1 мл и 10 мл; термометр; раствор соли марганца; раствор серной кислоты (1:2); раствор тиосульфата натрия (0,02 моль/л экв.); раствор крахмала (0,5%); раствор йодида калия щелочной.

Проведение анализа

1. Добавьте в склянку с пробой анализируемой воды разными пипетками 1 мл раствора соли марганца, 1 мл раствора йодида калия, погружая пипетку с раствором в кислородную склянку на глубину 2-3 см, как показано на рисунке и по мере выливания раствора поднимайте пипетку вверх.

Излишек жидкости из склянки стечет через край на подставленную чашку Петри.

Слегка наклоните склянку, закройте пробкой. Излишек жидкости стечет через край. Следите, чтобы в склянке не осталось пузырьков воздуха.

Склянка не должна оставаться открытой.

2. Перемешайте содержимое склянки имеющейся внутри мешалкой, удерживая склянку рукой. Поместите склянку с зафиксированной пробой в темное место для отстаивания (не менее 10 минут и не более 24 часов).

    Добавьте пипеткой 2 мл раствора серной кислоты.

    Закройте склянку пробкой и перемешайте содержимое до полного растворения осадка.

5. Перенесите содержимое склянки в кониче­скую колбу для титрования вместимостью 250 мл.

Примечание. Можно проводить титрование части пробы. Для этого из кислородной склянки в колбу для титрования перенесите цилиндром 50,0 мл обработанной пробы.

6. Заполните пипетку (бюретку), закреплен­ную в стойке-штативе раствором тиосульфата натрия (0,02 моль/л экв.) и титруйте пробу до слабо желтой окраски. Затем добавьте пипеткой 1 мл раствора крахмала (раствор в колбе синеет) и продолжайте титровать до полного обесцвечивания раствора.

7. Определите общий объем раствора тиосульфата натрия, израсходованного на титрование (как до, так и после добавления раствора крахмала).

МЕТОДИКА ОПРЕДЕЛЕНИЯ
БИОХИМИЧЕСКОГО ПОТРЕБЛЕНИЯ КИСЛОРОДА
ПОСЛЕ 5 ДНЕЙ ИНКУБАЦИИ (БПК 5)
В ПРОБАХ ПИТЬЕВЫХ, ПРИРОДНЫХ И СТОЧНЫХ ВОД
АМПЕРОМЕТРИЧЕСКИМ МЕТОДОМ

НДП 10.1:2:3.131-2016

Москва
2016 г.

Сведения об организации-разработчике:

© ЗАО «РОСА», 2016

Адрес: 119297, Москва, ул. Родниковая, д. 7, стр. 35

1 Настоящее издание методики действует до выхода нового издания.

2 Разработчик оставляет за собой право вносить в методику изменения, которые не касаются принципа метода и диапазона измеряемых значений, а также процедур, которые могут оказывать влияние на значения приписанных показателей точности.

РАЗРАБОТЧИКИ:

СОГЛАСОВАНО:

1 ОБЩИЕ ПОЛОЖЕНИЯ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий нормативный документ устанавливает методику определения биохимического потребления кислорода после 5 дней инкубации (БПК 5) амперометрическим методом. Методика распространяется на следующие объекты анализа: воды питьевые, воды природные пресные (поверхностные и подземные, в том числе источники водоснабжения), воды сточные (производственные, хозяйственно-бытовые, ливневые и очищенные).

Примечание - Допускается применение методики для анализа вод бассейнов и аквапарков, талых вод, технических вод и атмосферных осадков (дождь, снег, град).

Диапазон измерений массовых концентраций биохимического потребления кислорода в питьевых и природных водах от 0,5 до 1000 мг/дм 3 в пересчете на О 2 , в сточных водах - от 1,0 до 80000 мг/дм 3 в пересчете на О 2 .

Биохимическое потребление кислорода - это массовая концентрация растворенного в воде кислорода, потребленного на биохимическое окисление содержащихся в воде органических и (или) неорганических веществ за 5 суток инкубации при температуре (20 ± 1) °С без доступа воздуха и света. Этот показатель является некоторой условной мерой загрязнения вод органическими соединениями.

Для целей экологического контроля качества вод БПК определяют только в натуральной (взболтанной) пробе, чтобы учесть суммарное загрязнение находящимися в разных формах веществами. При эксплуатации очистных сооружений для оценки процесса очистки на разных ее этапах возможно определение БПК в натуральной (взболтанной), отстоянной в течение двух часов или фильтрованной пробе.

Пробы сильно загрязненной воды разбавляют специально приготовленной разбавляющей водой, содержащей неорганические питательные вещества в количестве, достаточном для нормального протекания аэробных биохимических процессов. При анализе стерильных вод, в них вносят микробную затравку.

Определению БПК мешают токсичные вещества (медь, свинец и другие тяжелые металлы, активный хлор и т.д.), которые подавляют биохимическое окисление. В таких случаях БПК можно определить после удаления из воды токсичных веществ или после соответствующего разбавления пробы, при котором устраняется действие токсинов.

При определении БПК сточных вод, обработанных веществами, содержащими активный хлор, влияние свободного или связанного хлора устраняют добавлением раствора тиосульфата натрия или выдерживают воду на свету в течение (1 - 2) часов.

Особенностью биохимического окисления органических веществ в воде является сопутствующий ему процесс нитрификации, искажающий характер потребления кислорода. Количество кислорода, пошедшее на нитрификацию, может в несколько раз превышать количество кислорода, требуемое для биохимического окисления органических соединений. Поэтому при определении БПК необходимо вводить в пробу специальные вещества - ингибиторы, подавляющие жизнедеятельность нитрифицирующих бактерий, но не влияющие на обычную микрофлору. В качестве ингибитора применяют раствор тиомочевины, который вводят в пробу либо в разбавляющую воду.

Блок-схема проведения анализа приведена в приложении .

2 НОРМАТИВНЫЕ ССЫЛКИ

5.1.2 Дозаторы пипеточные варьируемого объема от 1 до 5 см 3 с погрешностью дозирования не более 1 % по ГОСТ 28311 .

5.1.3 Датчик растворенного кислорода, мембранный гальванический, например датчик CellOx 325 с автоматической компенсацией температуры (в комплекте с переливной вставкой).

5.1.4 Оксиметр (кислородомер) любой модели, оснащенный системой компенсации температуры и атмосферного давления, например оксиметр ProfiLine Oxi 3205 (WTW).

5.1.5 Потенциометр (pH-метр) или иономер любого типа с совместимой системой электродов (стеклянный измерительный электрод и насыщенный хлорсеребряный электрод сравнения по ГОСТ 17792).

5.1.6 Термометр лабораторный от 0 до 100 °С с ценой деления 1 °С по ГОСТ 28498 .

5.1.7 Часы песочные на 5 мин или таймер.

5.1.8 Дистиллятор или установка любого типа для получения воды дистиллированной по ГОСТ 6709 или воды для лабораторного анализа степени чистоты 2 по ГОСТ Р 52501 .

5.1.9 Мешалка магнитная любого типа по ТУ 25-11-834.

5.1.10 Микрокомпрессор для аквариумов любого типа.

5.1.11 Термостат воздушный, обеспечивающий инкубацию проб воды при температуре (20 ± 1)°С, например шкаф-термостат БПК, модель WTW TS 606/4-i.

5.1.12 Холодильник бытовой любого типа, обеспечивающий хранение растворов при температуре (2 - 10) °С.

5.2 Лабораторная посуда

5.2.1 Колбы для инкубирования: конические узкогорлые с притертыми пробками, например типа Кн-1-100-19/26 номинальной вместимостью 100 см 3 по ГОСТ 25336 , или склянки кислородные вместимостью от 100 до 250 см 3 .

5.2.2 Колбы конические вместимостью 250 см 3 по ГОСТ 25336 .

5.2.3 Колбы мерные вместимостью 100; 200; 250 и 1000 см 3 по ГОСТ 1770 .

5.2.4 Мензурки вместимостью 100; 250; 500 и 1000 см 3 по ГОСТ 1770 .

5.2.5 Палочки стеклянные.

5.2.6 Пипетки градуированные вместимостью 1; 5 и 10 см 3 по ГОСТ 29227 , 2 класс точности.

5.2.7 Пипетки с одной отметкой вместимостью 1; 5; 10; 25; 50 и 100 см 3 по ГОСТ 29169 , 2 класс точности.

5.2.8 Стаканы из термически стойкого стекла вместимостью 50 и 100 см 3 по ГОСТ 25336 .

5.2.9 Стаканчики для взвешивания (бюксы) по ГОСТ 25336 .

5.2.10 Сосуды из стекла или полимерного материала вместимостью 5000 см 3 и более в зависимости от объема приготавливаемой разбавляющей воды.

5.2.11 Флаконы из темного стекла вместимостью 100; 500 и 1000 см 3 для хранения растворов.

5.2.12 Флаконы из стекла или полимерного материала с навинчивающимися крышками для отбора и хранения проб вместимостью (500 - 1000) см 3 .

5.2.13 Цилиндры вместимостью 100; 250 и 500 см 3 по ГОСТ 1770 , 2 класс точности.

5.3.3 Железо (III) хлористое (хлорид) 6-водное по ГОСТ 4147 .

5.3.4 Калий фосфорнокислый однозамещенный по ГОСТ 4198 .

5.3.5 Калий фосфорнокислый двузамещенный 3-водный или калий фосфорнокислый двузамещенный безводный по ГОСТ 2493 .

5.3.6 Натрий фосфорнокислый двузамещенный 12-водный по ГОСТ 4172 или натрий фосфорнокислый двузамещенный 7-водный.

5.3.7 Магний сернокислый (сульфат) 7-водный по ГОСТ 4523 .

5.3.8 Кальций хлористый (хлорид) по ГОСТ 4460.

5.3.11 Натрий серноватистокислый 5-водный (натрия тиосульфат) по ГОСТ 27068 или стандарт-титр, c (Na 2 S 2 O3×5H 2 O) = 0,1 моль/дм 3 (0,1 н) по ТУ 6-09-2540.

5.3.12 Почва садовая или грунт для комнатных растений.

5.3.14 Бумага универсальная индикаторная, позволяющая измерять значение pH в диапазоне от 1 до 12 ед. pH с шагом 1 ед. pH, например по ТУ 6-09-1181.

5.3.15 Фильтры обеззоленные «синяя лента» по ТУ 6-09-1678.

Примечание - Все реактивы должны быть квалификации ч.д.а. или х.ч.

5.4 Стандартные образцы

Стандартный образец (СО) биологического потребления кислорода в воде, например ГСО 8048-94.

Примечания

1 Допускается использование средств измерений утвержденных типов других производителей, обеспечивающих измерения с установленной точностью.

2 Средства измерений должны быть поверены или калиброваны в установленные сроки, испытательное оборудование должно быть аттестовано в установленные сроки.

3 Допускается использование оборудования, материалов и реактивов с характеристиками, не хуже, чем у вышеуказанных, в т.ч. импортных.

6 УСЛОВИЯ БЕЗОПАСНОГО ПРОВЕДЕНИЯ РАБОТ

6.1 При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007 .

6.2 При работе с оборудованием необходимо соблюдать правила электробезопасности по ГОСТ Р 12.1.019 .

6.3 Обучение работающих безопасности труда должно быть организовано в соответствии с ГОСТ 12.0.004 .

6.4 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009 .

7 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРА

К выполнению измерений и обработке их результатов допускаются лица, имеющие среднее специальное или высшее образование химического профиля, владеющие техникой анализа и изучившие правила эксплуатации используемого оборудования.

8 УСЛОВИЯ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

При выполнении измерений в лаборатории соблюдают следующие условия:

температура воздуха

относительная влажность воздуха

не более 80 % при 25 °С

напряжение в сети

11.2 Выполнение измерений без разбавления пробы

Питьевые, относительно чистые природные и очищенные сточные воды с предполагаемыми значениями БПК 5 до 6 мг/дм 3 анализируют без предварительного разбавления.

Температуру пробы доводят до (20 ± 2) °С, нагревая или охлаждая ее (под струей горячей или холодной водопроводной воды). Контроль температуры пробы проводят при помощи термометра. Затем пробу насыщают кислородом, интенсивно встряхивая флакон с пробой не менее 10 мин.

После завершения процедуры насыщения к исследуемой воде добавляют 1 см 3 раствора тиомочевины и 1 см 3 почвенной вытяжки на 1 дм 3 пробы, перемешивают и оставляют на (3 - 5) мин (до отсутствия поднимающихся к поверхности мелких пузырьков).

11.3 Выполнение измерений с разбавлением пробы

При выполнении анализа загрязненных проб воды с предполагаемыми значениями БПК 5 выше 6 мг/дм 3 требуется предварительное разбавление пробы.

Для разбавления применяют разбавляющую воду, подготовленную по . Температура исследуемой пробы и разбавляющей воды должна быть (20 ± 2) °С. Перед разбавлением пробу воды насыщают кислородом воздуха интенсивным встряхиванием или перемешиванием.

Для ориентировочной оценки степени разбавления пробы можно использовать значение химического потребления кислорода (ХПК).

Условно принимают значение БПК равным 50 % от значения ХПК, а поскольку в воде после инкубации должно остаться (4 - 5) мг/дм 3 кислорода, предполагаемую степень разбавления (N) рассчитывают по формуле

С ХПК - значение ХПК в анализируемой пробе, мг/дм 3 ;

2 - коэффициент, устанавливающий 50 % уровень БПК от ХПК;

K - ожидаемая остаточная массовая концентрация кислорода в пробе после инкубации, мг/дм 3 .

Полученный результат показывает, во сколько раз надо разбавить анализируемую воду.

Необходимый для разбавления объем пробы воды рассчитывают следующим образом - объем колбы для разбавления делят на степень разбавления N.

Ввиду трудности выбора правильной степени разбавления для пробы воды неизвестного происхождения рекомендуется делать не менее (2 - 3) различных разбавлений: меньше и (или) больше рассчитанной степени разбавления N (например, если N = 8 делают дополнительное разбавление в 6 и/или в 10 раз).

Отбирают необходимый объем перемешанной пробы и наливают в мерную колбу или мензурку вместимостью (500 - 1000) см 3 . Затем добавляют разбавляющую воду до метки осторожно по стенке, чтобы в колбу не попали пузырьки воздуха. Мерную колбу закрывают пробкой и ее содержимое тщательно перемешивают, переворачивая колбу несколько раз. При выполнении разбавления в мензурке ее содержимое перемешивают стеклянной палочкой.

Примечание - Объем пробы до 10 см 3 отбирают пипеткой или дозатором, цилиндром отмеривают более 10 см 3 воды. Если для анализа необходимо взять объем пробы меньше 5 см 3 , то рекомендуется проводить последовательное разбавление пробы.

11.4 Заполнение кислородных колб и инкубация проб

Пробу воды, подготовленную по - , наливают в сухие колбы для инкубирования. Колбы наполняют водой до краев так, чтобы не было пузырьков воздуха. Если проба содержит грубодисперсные примеси, содержимое мензурки с разбавленной пробой перемешивают перед каждым переливанием. На каждую неразбавленную пробу или на каждое разбавление пробы берут не менее 2 колб. В одной из каждой пары заполненных колб сразу определяют массовую концентрацию растворенного кислорода по . Затем колбы закрывают притертыми стеклянными пробками так, чтобы под ними не осталось пузырьков воздуха, помещают в термостат с температурой (20 ± 1) °С и выдерживают в течение 5 дней (120 ± 4) ч. По истечении этого срока определяют массовую концентрацию неизрасходованного растворенного кислорода по .

11.5 Проверка степени чистоты разбавляющей воды холостым опытом

Для контроля применяемой разбавляющей воды проводят холостой опыт, для чего одновременно с анализируемыми пробами заполняют 2 колбы для инкубирования разбавляющей водой. В одной из них сразу же измеряют массовую концентрацию растворенного кислорода. Колбы закрывают притертыми пробками и вместе с пробами, для разбавления которых использовалась данная разбавляющая вода, помещают в термостат. После инкубации в них измеряют массовую концентрацию растворенного кислорода Разница массовой концентрации растворенного кислорода в разбавляющей воде до и после инкубации не должна превышать 0,5 мг/дм 3 .

При превышении результата холостого определения выявляют и устраняют возможный источник загрязнения разбавляющей воды.

11.6 Проведение измерения массовой концентрации растворенного кислорода амперометрическим методом

Сразу же после заполнения колбы пробой или после инкубации пробы выполняют измерение массовой концентрации растворенного кислорода с помощью оксиметра в комплекте с гальваническим мембранным датчиком, руководствуясь инструкцией по эксплуатации прибора.

Колбу с исследуемой пробой открывают, ставят на чистую чашку Петри, расположенную на магнитной мешалке, и вставляют в нее переливную вставку. Переливная вставка обеспечивает сбор переливающейся из колбы воды при измерениях.

Включают мешалку. Скорость вращения стержня мешалки должна быть достаточной для того, чтобы обеспечить постоянный поток воды вдоль мембраны датчика.

Погружают измерительный датчик в колбу, следят за отсутствием пузырьков воздуха на его торцевой поверхности. После стабилизации сигнала измерения фиксируют показание прибора. Результаты выражаются в мг/дм 3 .

Примечание - Большинство современных оксиметров (кислородомеров) проводят автоматическую компенсацию атмосферного давления и температуры при вычислении окончательного показания.

При использовании приборов и датчиков, не имеющих этих автоматических функций, изменение растворимости кислорода при различных температурах и атмосферном давлении необходимо пересчитать по справочным таблицам.

После того, как произведено измерение массовой концентрации растворенного кислорода до инкубации пробы, датчик вынимают из колбы, аккуратно снимают переливную вставку так, чтобы перелившаяся в процессе измерения исследуемая вода вновь наполнила колбу доверху без пузырьков воздуха. После чего колбу закрывают притертой пробкой и ставят в термостат для инкубации.

12 ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Результаты, полученные при анализе проб с разным разбавлением, могут различаться. В расчете используют результат измерения массовой концентрации растворенного кислорода в той колбе, где остаточная массовая концентрация растворенного кислорода после срока инкубации составляет не менее 3 мг/дм 3 и потреблено около 50 % кислорода. Если это условие выполняется в обеих колбах, то после проверки приемлемости результатов двух параллельных измерений X" и X" по п. вычисляют среднее арифметическое значение Х cр БПК 5 по формуле

X 1 - массовая концентрация растворенного кислорода в пробе анализируемой воды до инкубации, мг/дм 3 ;

Х 2 - массовая концентрация растворенного кислорода в пробе анализируемой воды после инкубации, мг/дм 3 .

Значение БПК 5 (X, мг/дм 3) для разбавленных проб воды рассчитывают по формуле

X = [(X 3 - X 4) - (X P1 - Х Р2)]⋅ N,

Х 3 - массовая концентрация растворенного кислорода в разбавленной пробе анализируемой воды до инкубации, мг/дм 3 ;

Х 4 - массовая концентрация растворенного кислорода в разбавленной пробе анализируемой воды после инкубации, мг/дм 3 .

X Р1 - массовая концентрация растворенного кислорода в разбавляющей воде до инкубации (холостой опыт), мг/дм 3 ;

Х Р2 - массовая концентрация растворенного кислорода в разбавляющей воде после инкубации (холостой опыт), мг/дм 3 ;

N - степень разбавления.

13 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Результаты измерений, как правило, в протоколах анализов представляют в виде:

ГОСТ Р ИСО 5725-6 14.2 При получении результатов измерений в двух лабораториях (Х лаб1 , Х лаб2) проводят проверку приемлемости результатов измерений в соответствии с требованиями.

Диапазоны измерений, мг/дм 3

Предел повторяемости
(относительное значение допускаемого расхождения для двух результатов измерении, полученных в условиях повторяемости), r, %

Предел воспроизводимости
(относительное значение допускаемого расхождения для двух результатов измерений, полученных в условиях воспроизводимости), R, %

Питьевая и природная вода

от 0,5 до 1 включ.

св. 1 до 10 включ.

св. 10 до 1000 включ.

Сточная вода

от 1 до 10 включ.

св. 10 до 100 включ.

св. 100 до 1000 включ.

св. 1000 до 80000 включ.

15 КОНТРОЛЬ ТОЧНОСТИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

15.1 В случае регулярного выполнения измерений по методике рекомендуется проводить контроль стабильности результатов измерений путем контроля среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности и погрешности с помощью контрольных карт в соответствии с рекомендациями ГОСТ Р ИСО 5725-6 (раздел 6).

Образец для контроля готовят с использованием СО и дистиллированной воды. Периодичность контроля стабильности результатов измерений регламентируют во внутренних документах лаборатории.

15.2 Оперативный контроль точности результатов измерений рекомендуется проводить с каждой серией проб, если анализ по методике выполняется эпизодически.

Образцами для контроля (ОК) являются растворы, приготовленные с использованием СО.

Оперативный контроль процедуры измерений проводят путем сравнения результата отдельно взятой контрольной процедуры (К к) с нормативом контроля (К).

Результат контрольной процедуры К к рассчитывают по формуле

где Δ л - характеристика абсолютной погрешности аттестованного значения БПК 5 в образце для контроля, установленная в лаборатории при реализации методики, мг/дм 3 .

Примечание - Допускается Δ л рассчитывать по формуле

где Δ - приписанная характеристика абсолютной погрешности методики измерений.

Качество контрольной процедуры признают удовлетворительным при выполнении условия:

При невыполнении условия контрольную процедуру повторяют. При повторном невыполнении условия выясняют причины, приводящие к неудовлетворительным результатам, и устраняют их.

В контексте темы заботы об окружающей среде часто обсуждается вопрос поддержки рек и других водоемов чистыми. Сейчас это крайне сложно делать, ведь сточные воды, которые сбрасываются в водоемы, сильно загрязнены.

После активного участия в том или ином процессе промышленного толка сточная вода накапливает огромное количество вредных элементов, которые, при попадании в открытый водоем, приводят к гибели водных обитателей и растений, а также к другим неприятным последствиям.

Для измерения степени загрязненности стоков берут за основу некоторые показатели, один из которых – это ХПК. Что такое ХПК, и как снизить этот показатель , мы и расскажем в данном материале.

Зачем нужны показатели степени загрязненности стоков?

Объем загрязнения сточных вод можно выявить по ряду показателей, наиболее распространенные среди них – это:

  • ХПК либо химическое потребление кислорода;
  • БПК – это биохимическое его потребление.

Измерение такого показателя, как ХПК нужно затем, чтобы проанализировать качество сточной воды или жидкости в водоеме либо с целью исследования состояния вод в целом. ХПК – это количественный показатель , он относится к наиболее информативным и подробным.

В качестве загрязнителей сточных вод выступают такие вещества, как:

  • растворенные;
  • взвешенные.

Метод исследования состояния жидкости с учетом ХПК заключается в том, что определяется количество кислорода, который был потрачен на окисление органики и минералов с содержанием углерода. ХПК также называют единицей химической окисляемости воды , поскольку органические вещества окисляются под действием кислорода. Ведь он, в свою очередь, относится к наиболее сильным окислителям.

Окисляемость в зависимости от происхождения окислителей, бывает таких видов:

  • йодатной;
  • бихроматной;
  • цериевой;
  • перманганатной.

Самые точные показатели определяются путем применения бихроматного или йодатного метода . Окисляемость выражается в соотношении объема кислорода, который был потрачен на окисление минеральных и органических веществ. Она выражается в миллиграммах из расчета на 1 кв. дм. жидкости.

Очищать сточные воды необходимо с целью сокращения концентрации вредных веществ до нормальных показателей, которые утверждены в нормативных документах.

Очистка проводится на специальных очистных сооружениях или станциях. Их компоновка зависит от количества и качества сточной воды, а также уровня ее загрязнения. Однако схема обработки стоков будет одинаковой и главная цель работы – сократить показатели ХПК и БПК.

ХПК и БПК в качестве критериев загрязнений вод

Значение ХПК включает в себя суммарное содержание в жидкости органических веществ в объеме израсходованного связанного кислорода на их окисление. ХПК – это общий показатель загрязнений промышленных и природных вод.

А вот такой показатель, как БПК определяет количество растворенного кислорода, который потрачен на окисление бактериями органических веществ в нужном объеме жидкости.

Для одинаковых проб по величине ХПК будет выше показателя БПК, поскольку больше веществ подвергается химическому окислению.

Какие факторы влияют на ХПК

Факторов, способных повлиять на состав вредных веществ и на показатель кислотности жидкости, есть масса. Один из ключевых факторов – это совокупность биохимических процессов, происходящих в самом водоеме . Вследствие этих процессов вещества вступают в реакции друг с другом и образовывают новые, которые по структуре могут отличаться от предыдущих и иметь другой химический состав.

Эти вещества могут поступать в водоем следующим образом:

  • вместе с атмосферными осадками;
  • вместе с бытовыми или хозяйственными сточными водами;
  • с подземными и поверхностными сточными водами.

Их структура и состав могут быть очень разными, в частности, которые из них могут быть устойчивыми по отношению к окислителям . В зависимости от этого фактора нужно выбирать наиболее эффективный окислитель для тех или иных веществ.

В поверхностных водах органические вещества могут иметь взвешенный, растворенный или коллоидный вид. Окисляемость отличается для фильтрованных и нефильтрованных проб . Природные же воды менее подвержены загрязнению органикой естественного происхождения.

Поверхностные воды имеют более высокую степень окисляемости по сравнению с такими типами вод, как:

  • подземные;
  • грунтовые и прочие.

Например, горные реки и озера имеют окисление в районе 2–3 мг на кубический дециметр, реки с болотным питанием – 20 мг/куб. дм и равнинные водоемы – от 5 до 12 соответственно.

Существенный фактор, который влияет на окисляемость – это сезонные изменения, происходящие в гидробиологическом и гидрологическом режимах.

Также окисляемость водоема может меняться под воздействием человеческой деятельности, в зависимости от сферы деятельности людей в водоем поступают загрязнения того или иного вида.

Требования к показателю ХПК согласно норме

По нормативу показатели ХПК должны колебаться в пределах от 15 до 30 мг/ куб. дм . Степени загрязнения сточных вод согласно показателям ХПК выглядят так:

  • очень чистые – до 2 мг/куб. дм;
  • относительно чистые – 3 мг/куб. дм;
  • средней загрязненности – 4 мг/куб. дм;
  • загрязненные – 15 мг/куб дм. и выше.

Стадии очистки сточных вод и снижения показателей их загрязненности

Очистка сточных вод включает в себя такие стадии:

  • первичная очистка – это удаление масляных пленок, крупных частей грязи и численных загрязнений, которые легко удаляются. Данная стадия предусматривает очистку физико-механическим способом;
  • вторичная очистка . На данном этапе отделяют взвешенные части и загрязнители, которые содержатся даже в растворенном виде. Некоторые загрязнители имеют органическое происхождение и их нужно удалять с помощью биологического окисления. Данная стадия подразумевает биологический метод очистки сточных вод;
  • третичная очистка – это удаление всех оставшихся мелких частиц и загрязнителей, включая соли металлов. Очистка осуществляется методом осмоса, электродиализа, фильтрования через адсорбент и т. д.;
  • четвертая стадия – на данном этапе идет обезвоживание шлама, что сводит его объем и вес к минимуму.

Уровень ХПК и БПК постепенно сокращается до тех или иных значений на каждой из стадии, объем их сокращения зависит от особенностей сточных вод.

Далеко не всегда сточные воды очищаются во все четыре стадии. Очень часто очистные сооружения сбрасывают сточные воды в коллектор уже после первой стадии очистки, и это приводит показатели ХПК в норму . В некоторых странах очистка осуществляется только в два этапа, третий этап применяется лишь в крайнем случае.

Отличие бытовых сточных вод от промышленных

Сточные воды могут иметь промышленное или бытовое происхождение, природа загрязнений в них тоже отличается. Так, как правило, бытовые стоки загрязнены такими вещами, как:

  • мусор;
  • органические остатки;
  • моющие вещества.

А вот промышленные стоки наполняются отходами производства, если это пищевая промышленность, то там больше всего будет взвешенных веществ и жиров . Значения ХПК и БПК в промышленных стоках будут выше, чем в бытовых.

Иногда стоки объединяются, вследствие чего органика из бытовых сточных вод становится питательной средой для активного ила биоочистки.

Диапазоны соотношения критериев для разных вод

Анализ такого показателя, как ХПК проводят, чтобы определить, сколько всего содержится эквивалентного бихромату кислорода, который пошел на окисление всех находящихся в пробе органических и неорганических веществ.

Как уже упоминалось ранее, такая величина, как ХПК, которая оценивает восстановительную активность химических веществ, будет больше БПК, значение которого зависит исключительно от количества органики, подверженной биохимическому разложению. Соотношение между этими двумя показателями отражает полноту биохимического окисления веществ , которые содержатся в сточных водах. Чем больше разница между этими показателями, тем больше прирост биологически активных масс. В частности, по этому соотношению можно определить, насколько пригодны сточные воды для биологической очистки.

Если веществ, подверженных биохимическому окислению будет мало, то лучше всего для исследований применять физико-химические методики, которые смогут привести соотношение показателей к требуемой цифре.

Оптимальный диапазон соотношения БПК и ХПК – это от 0,4 и до 0, 75 единиц . Оптимальное значение для соотношения между химической и биологической потребностью в кислороде – это 0,7, при нем процесс биологической очистке сможет проходить полноценно и в полном объеме.

После того, когда сточные воды разделены гравитационным способом, из них удаляют преимущественно те вещества, которые трудно окислить. После этой стадии соотношение показателей увеличивается.

Затем следует стадия биологической очистки , вследствие которой соотношение показателей снижается на 0,2, поскольку в сточных водах исчезают органические вещества, подвергающиеся биохимическому окислению.

Также с целью оценки наличия в водах биологически разлагаемых частиц можно применять и обратное соотношение показателей. Например, согласно санитарным требованиям, которые подразумевают, что ХПК для сточных вод, пригодных к биоочистке, этот показатель не должен превышать показатель БПК более чем в полтора раза.

Если говорить о сооружениях для биологической очистки, которые очищают смеси домашних и производственных сточных вод, то в них, как правило, соотношение обоих параметров в поступающей жидкости на очистку составляет где-то в районе от 1,5 до 2,5 . Когда сточная вода смешивается с промышленными отходами, этот показатель увеличивается и до 3,5, а при стоке вод с некоторых производственных мощностей он может доходить и до 8.

Как видите, значение ХПК позволит проанализировать состояние жидкости в водоемах и даст возможность выяснить, насколько эта она пригодна к очистке и в какой степени. Подробные исследования этого и прочих значений позволят сделать окружающую нас среду гораздо чище.

Введение

Вода незагрязненных водоемов в зависимости от температуры (от 30ºС до 0 ºС) содержит 8-14 мг/л кислорода в насыщенном состоянии при атмосферном давлении. Поступающие в водоем вместе со сточными водами бактерии и некоторые химические вещества потребляют для своего окисления растворенный в воде кислород, понижая тем самым содержание его в воде.

При очень низком содержании кислорода жизнедеятельность в водоеме затухает, интенсивность процессов самоочищения снижается, а иногда и почти прекращается. Процесс окисления поступающих в водоем вместе со сточными водами веществ может быть разделен на три стадии, характеризующиеся определенной последовательностью расходования кислорода.

Вначале идет процесс химического окисления легко и трудно окисляющихся соединений, затем биохимическое окисление органических веществ, и, наконец, нитрификация азотсодержащих веществ с образованием солей азотной кислоты.

Если первая стадия (чисто химическое потребление кислорода) не длительна, то вторая (биохимическое окисление), в зависимости от температуры сточной воды и концентрации органических веществ - длится несколько суток. Процесс нитрификации может происходить более продолжительное время (до 40 – 50 суток).

Практическое значение имеет вторая фаза окисления сточных вод, протекающая при участии микроорганизмов в присутствии растворенного в воде свободного кислорода, в результате которой сточная вода приобретает способность не загнивать.

Под влиянием микроорганизмов органическое вещество сточных вод постепенно минерализуется, требуя для своего окисления все меньше кислорода (происходит распад органического вещества).

БПК сточных вод при этом постепенно уменьшается до момента полной минерализации, когда кислород уже не расходуется.

Биохимическое потребление кислорода (БПК) определяется количеством кислорода в мг/л, которое требуется для окисления находящихся в воде органических веществ, что устанавливается по разности в содержании кислорода в момент взятия пробы и спустя определенное время, например 5 суток (БПК ).



При относительно сильном загрязнении воды открытых водоемов может оказаться, что спустя 5 суток в ней совсем не окажется кислорода. Поэтому анализ начинают с того, что исследуемую воду предварительно взбалтывают в продолжении 1 мин в присутствии воздуха для насыщения ее кислородом. Потом определяют растворенный кислород в одной части ее пробы сразу же после взбалтывания, а в другой – спустя 5 суток выстаивания в темном месте при t = 18 – 20ºС.

Полное окисление происходит где-то за 20 суток, но для практических целей обычно определяют БПК через 5 суток и только для более полной качественной характеристики сточной воды в ней определяют БПК и БПК .

Растворенный в воде кислород находят по методу Винклера. Принцип данного метода основан на том, что гидроокись двухвалентного марганца MnO (белый осадок) поглощает свободный кислород, образуя двуокись марганца MnO (бурый осадок).

Осадок растворяют в соляной кислоте. При этом выделяется йод в количестве, эквивалентном содержанию в воде растворенного кислорода. Выделившийся йод оттитровывается раствором гипосульфита (тиосульфата натрия) в присутствии крахмала:

2MnCl + O + 4NaOH = 2MnO + 4NaCl + 2H O;

MnO + 2KI + 4HCl = MnCl + I + 2KCl + 2H O;

I + 2Na S O = Na S O + 2NaI

Цель анализа – провести оценку качества сточной воды по результатам ее анализов на БПК.

Принцип метода анализа основан на определении убыли растворенного в воде кислорода за определенное время (5 или 20 суток).

Реактивы:

Раствор хлористого марганца: 50 г MnCl растворяют в 100 см 3 дистиллированной воды;

Смесь едкого натрия и йодистого калия: 32 г х.ч. гидроокиси натрия растворяют в 100 см 3 воды и затем прибавляют 2 г йодистого калия.

Раствор, подкисленный соляной или серной кислотами, не должен давать синей окраски с крахмалом;

0,02 н. раствор тиосульфата натрия (титр устанавливают по бихромату калия);

0,5%-ный раствор крахмала.

Приборы и материалы:

Склянка с притертой пробкой вместимостью 250 см 3 ;

Пипетка;

Бюретка.

Ход определения

Две одинаковые склянки с притертыми пробками вместимостью 250 см 3 заполняют испытуемой водой и закрывают пробками так, чтобы под ними не было ни одного пузырька воздуха.

В одной пробе содержание кислорода определяют сразу, в другой - через 5 суток. Причем пробу хранят в темноте при комнатной температуре.

В склянку сразу после взятия анализируемой на содержание кислорода пробы, сразу после взятия пробы, вводят пипеткой 1 см 3 раствора хлористого марганца и 3 – 4 см 3 щелочного раствора йодистого калия.

При этом пипетку опускают до дна склянки и постепенно поднимают по мере вытекания из нее реактива. Затем склянку тут же осторожно закрывают пробкой. При этом часть жидкости, эквивалентная объему введенных растворов реактивов, вытесняется. Содержимое склянки перемешивают, переворачивая ее не менее 15 раз. После 10 – минутного отстаивания, когда жидкость над осадком просветлеет, образовавшийся осадок гидроокиси марганца растворяют добавлением 1 см 3 концентрированной серной кислоты. Для полного растворения осадка склянку встряхивают. Затем из нее отбирают в коническую колбу адекватную часть жидкости, равную точно 200 см 3 раствора, и титруют выделившийся йод 0,02 н. раствором тиосульфата натрия. К концу титрования, когда раствор приобретает бледно – желтый цвет, в него добавляют 0,5%-ный раствор крахмала и продолжают титрование до его обесцвечивания. ;

А - содержание растворенного кислорода в воде до инкубации, мг/ дм 3 ;

А - содержание растворенного кислорода в воде после инкубации, мг/ дм 3 .

Любая сточная вода характеризуется рядом показателей, учет которых способствует сделать успешный выбор технологии очистки, позволяет определить меры для решения проблем связанных с качеством сточной воды. Основные показатели:

· ХПК и БПК;

· взвешенные частицы;

· температура;

· азот и фосфор;

· тяжелые металлы и специфические органические соединения;

· масла и жиры;

· микробное загрязнение.

БПК и ХПК

Наиболее распространенной характеристикой сточной воды является БПК (биологическое потребление кислорода; BOD), отражающее концентрированность стоков и показывающее необходимое количество кислорода для минерализации органических соединений микроорганизмами. Большинство биореакторов в мире имеет дело со сточными водами, БПК которых варьирует около 200 мг/л и очистка проходит по обычной схеме с использованием аэротенков с активным илом . Наиболее высокие значения БПК встречаются в стоках пищевой промышленности (ликероводочный завод до 120 г/л, производство сахара до 25 г/л) , тогда как муниципальные сточные воды с БПК 350 мг/л и выше считаются высоконагруженными .

Для производственных сточных вод, содержащих труднодоступные, токсичные соединения для более точной характеристики концентрации растворенных веществ определяется показатель ХПК (химическое потребление кислорода; COD). Показатель ХПК всегда выше, чем БПК. Небольшую долю ХПК составляет кислород, который идет на окисление тиосульфатов, сульфидов и др. Эта часть ХПК не может быть снижена в результате очистки.

ХПК бытовых стоков, как правило, варьирует в пределах 100-400 мг/л . Муниципальные стоки с ХПК 800 мг/л считаются сильно нагруженными .

Концентрированность промышленных сточных вод, как правило, во много раз выше, чем у муниципальных стоков. Очень высокая концентрация органики характерна для различных агрохимических производств. Например, сточная вода производства крахмала и сахара имеют ХПК 41 и 50 г/л соответственно. Чтобы снизить энергозатраты на подачу кислорода, в этих случаях, используют анаэробную предочистку . ХПК нефтехимических стоков также может достигать столь высоких значений (например, 48 г/л ), но очищается главным образом физическими и химическими методами.

Биологическая очистка может оказаться неэффективной, если большая часть растворенных компонентов стока окажется недоступными или труднодоступными для биодеградации. Такую доступность отражает отношение ХПК к БПК. Отношение от 1: 1 до 2.5: 1 говорит о возможности легкого биоразложения компонентов стока. Если ХПК значительно превышает БПК, как при производстве красителей (ХПК 4400 мг/л, БПК 55мг/л), то следует использовать физико-химические методы в качестве предварительной или полной очистки .

Высокая концентрация биологически окисляемых органических соединений в сбрасываемых в водоем стоках может приводить к связыванию естественных кислородных ресурсов и развитию септических условий. Ограничения для уровней БПК и ХПК в сточной воде 25 и 125 мг/л соответственно . Для нефтехимических стоков 10-40 и 100-200 мг/л .



Болезни собак