Какова биологическая роль ДНК? Строение и функции. Строение и функции днк Каковы функции молекулы днк в клетке

В конце ХIХ века в Швейцарии произошло событие, которое определило ход науки на многие десятилетия вперед: в ходе своих исследований ученый Ф. Мишер обнаружил в лимфоцитов неизвестные раньше молекулы.

Выделенные молекулы впоследствии были найдены во всех биологических видах и получили название, под которыми они известны сегодня: «нуклеиновые кислоты» . Функции нуклеиновых кислот в клетке заключаются в хранении и передаче наследственной информации.

Вконтакте

Нуклеиновые кислоты классифицируются по присутствию в их составе одной из разновидностей пятиуглеродного сахара (пентозы) . Дезоксирибонуклеиновая кислота, или ДНК, содержит дезоксирибозу, а рибонуклеиновая кислота (РНК) – рибозу.

Кратко их взаимодействие можно выразить так: из ДНК синтезируется РНК, а из РНК – белок . В структуре нуклеиновых кислот есть много общего.

Разберем подробнее, в какой части клетки находятся нуклеиновые кислоты, какие они выполняют функции, в чем заключаются особенности их строения и какие существуют виды нуклеиновых кислот.

ДНК

Молекулу ДНК можно сравнить с лестницей, которая закручена в спираль по направлению вправо. Ступеньки или «перемычки» на ней образованы парами азотистых оснований :

  • аденином (А);
  • гуанином (G);
  • тимином (Т);
  • цитозином (С).

Каждое из оснований формирует пару с другим, используя принцип комплементарности, где аденин соединяется исключительно с тимином (АТ), а гуанин с цитозином (GC). Поэтому хаотичность связей между ними только кажущаяся – строение нуклеиновых кислот подчиняется строгим и неизменным законам .

В зависимости от комбинаций нуклеотидов ДНК и находящихся в них азотистых оснований проявляются наши индивидуальные особенности (цвет кожи, глаз, волос, рост и т.д.). Молекулы ДНК располагаются в ядрах клеток, а также, в хлоропластах и (менее 1%).

Структура молекулы ДНК

Молекула ДНК – это биополимер, в составе которого основным мономером или структурной единицей является нуклеотид. Входят в состав нуклеотидов следующие компоненты: остаток фосфорной кислоты соединяется с пятиуглеродным сахаром – дезоксирибозой и встраивается в азотистое основание. Между собой мономеры объединяются в длинные цепи, образуя в конечном итоге двойные спирали .

Соединение спиралей друг с другом происходит посредством водородных связей. Аденин соединяется с тимином двумя, а цитозин с гуанином – тремя водородными связями. Азотистое основание, сахар и фосфатная группа входят в состав нуклеотидов обязательно.

Ширина молекулы колеблется от 2.2 до 2.4 нм, а длина каждого мономера в цепочке равна 0.33 нм .

Каждая цепочка дезоксирибонуклеиновой кислоты имеет определенную направленность. Две цепи, расположенные в противоположном направлении, называются антипараллельными.

Благодаря принципу комплементарности вся информация, находящаяся в одной цепи, дублируется и в другой. Соединение аденина и гуанина – это пуриновые основания, а тимина с цитозином – пиримидиновые. При этом необходимо знать, что в молекуле ДНК число пуриновых оснований всегда равно числу пиримидиновых .

Связь ДНК в передаче генов

Мы часто слышим обвинения в адрес генов, когда речь заходит о дурных склонностях и привычках человека. Попробуем разобраться, что такое гены и какую роль играет ДНК в передаче наследственных данных , переносит ли она негативную информацию. Каковы же функции нуклеиновых кислот в клетке?

Ген – это особый участок молекулы ДНК, образующийся из уникальных сочетаний нуклеотидов. Каждый тип гена находится в специально отведенном для этого участке спирали ДНК , никуда не мигрируя. Число нуклеотидов в генах постоянно. Например, ген, отвечающий за синтез инсулина, в своем составе имеет 60 пар нуклеотидов.

Также в цепочке ДНК находятся т.н. «некодирующие последовательности». Роль их в передаче генетического материала не до конца установлена. Предполагается, что эти последовательности отвечают за порядок в работе генов и «закручивают» хромосомы.

Весь объем генов в организме носит название . Он в свою очередь равномерно распределяется в 46 парах молекул ДНК. Каждая такая пара называется хромосома. Следовательно, организм человека состоит из 46 пар хромосом , в которые вложена вся генетическая информация, начиная от внешности, заканчивая предрасположенностью к различным заболеваниям.

Хромосомы различаются по своей морфологии и размеру. Основных форм две – Х и У. Человеческий организм содержит парные хромосомы, т.е. каждая имеет свою точную копию. Таким образом, в норме мы имеем 23 парные хромосомы . Каждая хромосомная пара выполняет свою функцию, отвечая за конкретные признаки. 22 пары хромосом отвечают за соматические признаки и лишь одна за половые. Сочетание хромосом ХХ означает, что на свет появится девочка, а сочетание ХУ – мальчик.

Мутации ДНК

Повреждение молекул ДНК может быть обусловлено множеством факторов, среди которых чаще всего мутагенное действие оказывают следующие:

  • Радиационный. Это рентгеновское или ультрафиолетовое излучение в высоких дозах.
  • Оксидантный. К этим видам мутагенов относят все свободные радикалы, оксид азота и пероксид водорода.
  • Канцерогенный. Фактор представлен обширным списком веществ, где наиболее распространенными являются бензопирен, афлатоксин и бромистый этидий.

Подавляющее число мутагенов проникают между двумя парами азотистых соединений, нарушая структуру молекулы нуклеиновой кислоты. Самые опасные включения мутагенных компонентов – двухцепочечные. Такие нарушения зачастую приводят к гибели целых фрагментов хромосом и различным транслокациям.

Важно! ДНК человека ежедневно подвергается атаке множества агрессивных факторов, которые вызывают повреждения структуры и разрыв самой спирали. Однако эта молекула отличается способностью к регенерации, что позволяет предупреждать мутации еще на этапе их формирования.

РНК

Принцип строения РНК принципиально тот же, что и структура ДНК, но с тем отличием, что рибонуклеиновая кислота сформирована в виде одинарной спирали, в ее составе тимин заменен урацилом, а место дезоксирибозы занимает рибоза .

Благодаря строго последовательному расположению нуклеотидов молекулы РНК способны кодировать наследственную информацию.

Однако, в отличие от ДНК, функции рибонуклеиновых кислот другие, более щирокие, в связи с тем, что есть три под вида молекул.

Виды РНК

Имеется 3 разновидности рибонуклеиновой кислоты:

  1. Транспортная (тРНК) . Входящие в состав цитоплазмы тРНК являются самыми маленькими молекулами рибонуклеиновой кислоты. Их форма схожа с формой листка клевера. тРНК несет ответственность за транспортировку специфических аминокислот непосредственно к участку, где происходит синтез белка, чтобы инициировать образование пептидных связей.
  2. Информационная или матричная (иРНК, иРНК) . Входит в состав ядра клетки и цитоплазмы. Она транспортирует информацию о строении белка от ДНК к рибосомам, которые являются местом его биосинтеза.
  3. Рибосомальная (рРНК) . Образуется в ядрышках и, как следует из названия, является главной составляющей рибосом. Самая крупная разновидность РНК. Соединяясь с информационной РНК, синтезирует белок

Существует также особый вид. Он обнаружен в некоторых вирусах, бактериях и микроорганизмах. Действует одновременно как тРНК и мРНК. Основная его функция – переработка белка.

Структура молекулы РНК

Структурная формула РНК характеризуется наличием гидроксильной группы в положении рибозы. Многие виды рибонуклеиновой кислоты, например, рРНК и иРНК, функционируют в комплексе с белками. Такие соединения называются рибонуклеотидами.

Строение нуклеотида РНК сходно со строением мономера ДНК. Азотистые основания также соединяются друг с другом по принципу комплементарности. Однако, вместо тимина здесь присутствует урацил, а пятиуглеродный сахар представлен рибозой.

Нуклеотиды в цепочке РНК соединяются с помощью фосфодиэфирных связей .

Синтез белка

Какие вещества могут хранить информацию о клетке, ее функциях, биологических и химических свойствах? Конечн, белки. Они являются уникальными компонентами любого живого организма. Биохимический синтез белка – это довольно сложный микропроцесс. Проходит он в три основных этапа:

  1. Транскрипция . Этот процесс протекает в ядре, и ответственность за него несет информационная РНК. Транскрипция заключается в считывании данных о будущем белке с генов, находящихся в ДНК, и переносе этих данных на информационную РНК. Далее иРНК транспортирует информацию в цитоплазму. Дезоксирибонуклеиновая кислота не имеет прямого отношения к биосинтезу белка, а только хранит и передает информацию. Во время транскрипции цепочки ДНК «расплетаются», а генетический материал считывается на РНК, с учетом парных комплексов азотистых оснований.
  2. Трансляция. Это окончательная стадия образования белковой молекулы. Информационная РНК через цитоплазму попадает в рибосомы, где и происходит сам биохимический синтез.
  3. Различные модификации полипептидной цепи . Происходят в результате совершившейся трансляции.

ДНК и РНК

Различия между ДНК и РНК

Для нуклеиновых кислот характерны не только схожие, но и отличительные черты. Общими можно назвать следующие признаки:

  • Содержат по две пары оснований.
  • Несут ответственность за передачу информации.
  • «Построены» из нуклеотидных связей, которые сформированы в соответствии с принципом комплементарности.
  • В составе биологической клетки обе кислоты играют взаимодополняющую роль.

Но, рассматривая обе эти кислоты , можно обнаружить существенные различия.

Любопытные факты

  • Единственный тип клеток, не содержащий ДНК, – это красные кровяные тельца.
  • Структура нуклеиновых кислот настолько похожа, что западные ученые выдвинули теорию: на ранних этапах эволюционной истории человечества ответственность за хранение информации, передаваемой по наследству, несла РНК.
  • Структурная формула молекулы ДНК была вычислена Д. Утсоном и Ф. Криком еще в 1953 году. И лишь спустя 9 лет эти ученые удостоились Нобелевской премии по медицине.
  • За различия между людьми отвечает менее 1% всех молекул ДНК , входящих в геном человека. Поэтому выражение «все мы из одного теста» имеет под собой научное обоснование.
  • Схожесть между ДНК человека и шимпанзе достигает 98%, а ДНК человека и свиньи совпадают на 96%.
  • Полная расшифровка генома человека была завершена в 2003 году .
  • Чтобы набрать на клавиатуре полный буквенный код генома человека, у вас уйдет 17 лет, с учетом того, что стучать по клавишам придется целыми сутками.
  • Геном человека составляет 100% генов , из которых 50% достаются от матери и 50% от отца.

Строение и функции нуклеиновых кислот, урок биологии

Чем отличаются ДНК и РНК

Вывод

На протяжении без малого двух столетий ученые пытаются разгадать все тайны крошечных спиралек, полностью расшифровать строение нуклеиновых кислот. Но и на сегодняшний день сделаны не все открытия, способные пролить свет на этих хранителей генетической информации. Возможно, в скором времени мы узнаем, какую еще не известную нам функцию выполняет ДНК .

Строение и свойства ДНК определяют ее основные функ­ции:

1. Хранение генетической информации . ДНК находится в ядре и исключена из активных обменных процессов.

2. Передача генетической информации потомству происхо­дит в процессе митоза и мейоза на основе репликации ДНК.

3. Запись генетической информации . Генетическая информация записана в виде ГЕНЕТИЧЕСКОГО или биохимического кода.

4 . Контроль за обменом веществ в клетке

Рибонуклеиновые кислоты (РНК)

Выделяют несколько видов РНК: рибосомальную, информационную (матричную), транспортную и др.Они имеют различную величину, структуру и функции.

Рибосомальная РНК (рРНК) имеет молекулярную массу 1-2 млн., число нуклеотидов - до 5000. Она составляет около 85% от всей РНК. рРНК не однород­на по своему составу. В клетках эукариот синтез рРНК локализован в ядрышке и осуществляется РНК - полимеразой I . Рибосомальные гены локализованы в хромосомах имеющих вторичную перетяжку. Рибосомальная РНК не транслируется и выполняет следующие функции:

1 .является структурным компонентом рибосомы 2. отвечает за взаимодействие с иРНК и тРНК


Информационная РНК (иРНК или мРНК) составляет около 5% всей клеточной РНК у эукариот. Она образуется на уникальных участ­ках цепи ДНК, несет информацию о структурных и регуляторных белках организма. В зависимости от степени сложности и-РНК бывает различной величины (1-3 тысячи нуклеотидов) и массы.

Бактериальная иРНК отличается по количеству кодируемых белков. Некоторые иРНК соответствуют только одному гену а другие (их большинство) – нескольким генам.

В составе и РНК можно выделить участки двух типов: кодирующие и некодирующие. Кодирующие определяют первичную структуру белка. Некодирующие располагаются на 5’ - конце (лидерные) и на 3’ - конце (концевой или трейлерный)

В 5" -концевой последовательности имеется участок, необходимый для связывания иРНК с рибосомой . Зрелая иРНК у эукариот на5"-конце несет "шапочку" или КЭП (метилированный гуанозин), на 3"-конце располагаетсяполиадениловый «хвост» (образованный 100-200 остатками адениловой кислоты).

Рис.24. Строение иРНК эукариот

Функции КЭП:

1 . защищает иРНК от деградации;

2. отвечает за присоединение иРНК к малой субъединице рибосомы

3. повышает эффективность трансляции иРНК у эукариот

Функции poly(А):

1. защита иРНК от деградации

2. он обеспечивает выход иРНК из ядра в цитоплазму

3. по его длине определяют время нахождения иРНК в цитоплазме (чем короче «хвост» тем больше времени иРНК находится в цитоплазме)

4. обеспечивает возможность многократной трансляции иРНК. После акта трансляции от её её 3" -конца отщепляется один или несколько нуклеотидов.

5. учувствует в процессе созревание иРНК

Таким образом, иРНК служит матрицей для синтеза клеточных белков , т.е. она выполняет роль посредника между ДНК и белком . Она несет информацию о времени, количестве, месте и условиях синтеза этого белка, а так же времени жизни и деградации самой себя (чаще всего эта информация запрограммирована специфическими последовательностями в 3"-нетранслируемой области). Определенные белки клетки узнают эти последовательности, связываются с ними и стабилизируют иРНК. иРНК выходит через поры ядра в цитоплазму. В цитоплазме она может накапливаться в неактивной форме, т.е. в виде информосом , в которых иРНК находится в комплексе с белками(рис.25).

Рис.25. Строение информосомы.

Они были открыты в 1964 г. в лаборатории А.С. Спирина . В настоящее время точно установлено, что «запасные» иРНК в эмбриональных клетках сразу не транслируются, а запасаются для использования на более поздних стадиях эмбриогенеза и играют важную роль при дифференцировке клеток. Информосомы длительное время могут сохраняться в цитоплазме и использоваться клеткой по мере необходимости. Их существование было доказано в яйцеклетках. Так, при облучении лазерным лучом определенных участков цитоплазмы яйцеклетки нарушалось формирование первичных половых клеток, т.к. разрушались информосомы, содержащие информацию о регуляторных белках, ответственных за специализацию первичных половых клеток.


Таким образом, эта форма существования РНК имеет прямое отношение к регуляции трансляции в рибосомальном аппарате клетки.

Транспортная РНК (тРНК) составляет около 10% всей кле­точной РНК(рис.26). Ее молекулярная масса примерно 10 000. Ее структура наиболее изучена по сравнению с другими классами РНК. Синтезируется у эукариот тРНК при помощи РНК-полимеразы III в виде предшественников. Структура молекул тРНК отличается эволюционной консервативностью, что по-видимому связано с высокой степенью их функциональной специализации. Зрелая тРНК имеет 75-85 нуклеотидов. На 5" конце она всегда имеет гуанин , на 3" - триплет ЦЦА. Первичная структура тРНК -одинарная цепь нуклеотидов. Вторичная напоминаетклевер­ный листок с четырьмя спиральными участками - «шпильками», где спарены комплементарные нуклеотиды: А - У, Г - Ц. На концах «шпилек» находятся одноцепочечные пет­ли. Третичная структура тРНК возникает в результате склады­вания боковых «шпилек» и взаимодействия дополнительных оснований. Напоминает по форме латинскую букву L.

В нижней петле расположен антикодон - триплет, который взаимодействует с комплементарным кодоном иРНК (рис.26.). Аминокислота присоединяется к концевому аденозину на 3"-конце (акцепторный конец).

Таким образом, тРНК выполняет две функции: 1. Расшифровку кодона иРНК; 2. Расшифровку и перенос соответствующей аминокислоты.

Рис.26. Вторичная и третичная структура тРНК. (Б. Альбертс и др., 1994, т.1, с. 60)

Низкомолекулярные РНК (нмРНК или мяРНК) разнообразны по функциям, структуре и размерам. нмРНК обнаружены и в ядре и цитоплазме эукариот в составе рибонуклеопротеидных частиц (РНП-частицы), которые играют важную роль в механизме сплайсинга иРНК, в синтезе белков , секретируемых клеткой. Некоторые ферменты (например, изомераза, амилаза, панкреатическая рибонуклеаза) содержат нмРНК в качестве необходимого структурного элемента .

Гетерогенная ядерная РНК (гяРНК) – смесь транскриптов многих ядерных генов; локализована в ядре.

У большинства организмов все РНК являются посредника­ми между ДНК и структурами клетки. Только у некоторых вирусов и бак­териофагов РНК играет роль первичной информационной сис­темы .

Хорошо известно, что все формы живой материи, начиная от вирусов и заканчивая высокоорганизованными животными (в том числе человеком), обладают уникальным наследственным аппаратом. Он представлен молекулами двух видов и рибонуклеиновой. В этих органических веществах закодирована информация, которая передается от родительских особей к потомству при размножении. В данной работе мы изучим как строение, так и функции ДНК и РНК в клетке, а также рассмотрим механизмы, лежащие в основе процессов передачи наследственных

Как оказалось, свойства нуклеиновых кислот, хотя и имеют некоторые общие признаки, тем не менее во многом различаются между собой. Поэтому мы сравним функции ДНК и РНК, осуществляемые этими биополимерами в клетках различных групп организмов. Таблица, представленная в работе, поможет разобраться, в чем состоит их принципиальное отличие.

Нуклеиновые кислоты - сложные биополимеры

Открытия в области молекулярной биологии, происшедшие в начале ХХ столетия, в частности, расшифровка строения дезоксирибонуклеиновой кислоты, послужили толчком для развития современной цитологии, генетики, биотехнологии и генной инженерии. С точки зрения органической химии ДНК и РНК представляют собой высокомолекулярные вещества, состоящие из многократно повторяющихся звеньев - мономеров, называемых также нуклеотидами. Известно, что они соединяются между собой, образуя цепи, способные к пространственной самоорганизации.

Такие макромолекулы ДНК часто связываются со специальными белками, имеющими особые свойства и называемыми гистонами. Нуклеопротеидные комплексы образуют особые структуры - нуклеосомы, которые, в свою очередь, входят в состав хромосом. Нуклеиновые кислоты могут находиться как в ядре, так и в цитоплазме клетки, присутствуя в составе некоторых ее органелл, например, митохондрий или хлоропластов.

Пространственная структура вещества наследственности

Чтобы понять функции ДНК и РНК, нужно детально разобраться с особенностями их строения. Как и белкам, нуклеиновым кислотам присущи несколько уровней организации макромолекул. Первичная структура представлена полинуклеотидными цепями, вторичная и третичная конфигурации самоусложняются благодаря возникающему ковалентному типу связи. Особая роль в поддержании пространственной формы молекул принадлежит водородным связям, а также вандерваальсовым силам взаимодействия. В результате образуется компактная структура ДНК, называемая суперспиралью.

Мономеры нуклеиновых кислот

Строение и функции ДНК, РНК, белков и других органических полимеров зависят как от качественного, так и от количественного состава их макромолекул. Оба вида нуклеиновых кислот состоят из структурных элементов, именуемых нуклеотидами. Как известно из курса химии, строение вещества обязательно влияет на его функции. ДНК и РНК не являются исключением. Оказывается, что от нуклеотидного состава зависит вид самой кислоты и ее роль в клетке. Каждый мономер содержит три части: азотистое основание, углевод и остаток ортофосфорной кислоты. Известно четыре вида азотистых оснований для ДНК: аденин, гуанин, тимин и цитозин. В молекулах РНК ими будут, соответственно, аденин, гуанин, цитозин и урацил. Углевод представлен различными видами пентозы. В рибонуклеиновой кислоте находится рибоза, а в ДНК - ее обескислороженная форма, называемая дезоксирибозой.

Особенности дезоксирибонуклеиновой кислоты

Сначала мы рассмотрим строение и функции ДНК. РНК, имеющая более простую пространственную конфигурацию, будет изучена нами в следующем разделе. Итак, две полинуклеотидные нити удерживаются между собой многократно повторяющимися водородными связями, образующимися между азотистыми основаниями. В паре "аденин - тимин" присутствуют две, а в паре "гуанин - цитозин" - три водородные связи.

Консервативное соответствие пуриновых и пиримидиновых оснований было открыто Э. Чаргаффом и получило название принципа комплементарности. В отдельно взятой цепи нуклеотиды связаны между собой фосфодиэфирными связями, формирующимися между пентозой и остатком ортофосфорной кислоты рядом расположенных нуклеотидов. Спиральный вид обеих цепей поддерживается водородными связями, возникающими между атомами водорода и кислорода, находящимися в составе нуклеотидов. Высшая - третичная структура (суперспираль) - характерна для ядерной ДНК эукариотических клеток. В таком виде она присутствует в хроматине. Однако бактерии и дезоксирибонуклеиновую кислоту, не связанную с белками. Она представлена кольцеобразной формой и называется плазмидой.

Такой же вид имеет ДНК митохондрий и хлоропластов - органелл растительных и животных клеток. Далее мы выясним, чем отличаются между собой функции ДНК и РНК. Таблица, приведенная ниже, укажет нам эти различия в строении и свойствах нуклеиновых кислот.

Рибонуклеиновая кислота

Молекула РНК состоит из одной полинуклеотидной нити (исключением являются двухцепочные структуры некоторых вирусов), которая может находиться как в ядре, так и в клеточной цитоплазме. Существует несколько видов рибонуклеиновых кислот, которые разнятся между собой строением и свойствами. Так, информационная РНК имеет наибольшую молекулярную массу. Она синтезируется в ядре клетки на одном из генов. Задача иРНК - перенести информацию о составе белка из ядра в цитоплазму. Транспортная присоединяет мономеры белков - аминокислоты - и доставляет их к месту биосинтеза.

Наконец, рибосомная РНК формируется в ядрышке и участвует в синтезе белка. Как видим, функции ДНК и РНК в клеточном метаболизме разнообразны и очень важны. Они будут зависеть, прежде всего, от того, в клетках каких организмов находятся молекулы вещества наследственности. Так, у вирусов рибонуклеиновая кислота может выступать носителем наследственной информации, тогда как в клетках эукариотических организмов эту способность имеет только дезоксирибонуклеиновая кислота.

Функции ДНК и РНК в организме

По своему наряду с белками, являются важнейшими органическими соединениями. Они сохраняют и передают наследственные свойства и признаки от родительской особи к потомству. Давайте определим, чем отличаются между собой функции ДНК и РНК. Таблица, представленная ниже, покажет эти различия подробнее.

Каковы особенности вещества наследственности вирусов?

Нуклеиновые кислоты вирусов могут иметь вид как одно-, так и двухнитевых спиралей или колец. Согласно классификации Д.Балтимора, эти объекты микромира содержат молекулы ДНК, состоящие из одной или двух цепей. К первой группе относятся возбудители герпеса и аденовирусы, а во вторую входят, например, парвовирусы.

В вирусологии принято разделение этих организмов на несколько групп. Так, к первой относятся виды, которые называются одноцепочечными (+) РНК. У них нуклеиновая кислота выполняет такие же функции, как и информационная РНК эукариотических клеток. В другую группу входят однонитевые (-) РНК. Сначала с их молекулами происходит транскрипция, приводящая к появлению молекул(+) РНК, а те, в свою очередь, служат матрицей для сборки вирусных белков.

На основании всего вышесказанного, для всех организмов, включая и вирусы, функции ДНК и РНК кратко характеризуются так: хранение наследственных признаков и свойств организма и дальнейшая передача их потомству.

Нуклеиновые кислоты были открыты в 1868 г. швейцарским ученым Ф. Мишером.
В организмах существует несколько видов нуклеиновых кислот, которые встречаются в различных органоидах клетки – ядре, митохондриях, пластидах.
К нуклеиновым кислотам относятся ДНК, и-РНК, т-РНК, р-РНК .

Дезоксирибонуклеиновая кислота (ДНК)

– линейный полимер, имеющий вид двойной спирали, образованной парой антипараллельных комплементарных (соответствующих друг другу по конфигурации) цепей. Пространственная структура молекулы ДНК была смоделирована американскими учеными Джеймсом Уотсоном и Френсисом Криком в 1953 г.
Мономерами ДНК являются нуклеотиды .
Каждый нуклеотид ДНК состоит из пуринового (А – аденин или Г – гуанин) или пиримидинового (Т – тимин или Ц – цитозин) азотистого основания , пятиуглеродного сахара – дезоксирибозы и фосфатной группы .
Нуклеотиды в молекуле ДНК обращены друг к другу азотистыми основаниями и объединены парами в соответствии с правилами комплементарности : напротив аденина расположен тимин, напротив гуанина – цитозин. Пара А – Т соединена двумя водородными связями, а пара Г – Ц – тремя. При репликации (удвоении) молекулы ДНК водородные связи рвутся и цепи расходятся и на каждой из них синтезируется новая цепь ДНК. Остов цепей ДНК образован сахарофосфатными остатками.
Последовательность нуклеотидов в молекуле ДНК определяет ее специфичность , а также специфичность белков организма, которые кодируются этой последовательностью. Эти последовательности индивидуальны и для каждого вида организмов, и для отдельных особей.
Пример :
дана последовательность нуклеотидов ДНК: ЦГА – ТТА – ЦАА.
На информационной РНК (и-РНК) будет синтезирована цепь ГЦУ – ААУ – ГУУ, в результате чего выстроится цепочка аминокислот: аланин – аспарагин – валин.
При замене нуклеотидов в одном из триплетов или их перестановке этот триплет будет кодировать другую аминокислоту, а, следовательно изменится и белок, кодируемый данным геном. Изменения в составе нуклеотидов или их последовательности называются мутацией .

Рибонуклеиновая кислота (РНК)

– линейный полимер, состоящий из одной цепи нуклеотидов. В составе РНК тиминовый нуклеотид замещен на урациловый (У). Каждый нуклеотид РНК содержит пятиуглеродный сахар – рибозу, одно из четырех азотистых оснований и остаток фосфорной кислоты.
Синтезируются РНК в ядре. Процесс называется транскрипция - это биосинтез молекул РНК на соответствующих участках ДНК; первый этап реализации генетической информации в клетке, в процессе которого последовательность нуклеотидов ДНК «переписывается» в нуклеотидную последовательность РНК.
Молекулы РНК формируются на матрице, которой служит одна из цепей ДНК, последовательность нуклеотидов в которой определяет порядок включения рибонуклеотидов по принципу комплементарности. РНК-полимераза, продвигаясь вдоль одной из цепей ДНК, соединяет нуклеотиды в том порядке, который определен матрицей. Образовавшиеся молекулы РНК называют транскриптами .
Виды РНК.
Матричная или информационная РНК. Синтезируется в ядре при участии фермента РНК-полимеразы. Комплементарна участку ДНК, на котором происходит синтез. Ее функция – снятие информации с ДНК и передача ее к месту синтеза белка – на рибосомы. Составляет 5% РНК клетки.
Рибосомная РНК – синтезируется в ядрышке и входит в состав рибосом. Составляет 85% РНК клетки.
Транспортная РНК – транспортирует аминокислоты к месту синтеза белка. Имеет форму клеверного листа и состоит из 70-90 нуклеотидов.

Аденозинтрифосфорная кислота – АТФ

– представляет собой нуклеотид, состоящий из азотистого основания аденина, углевода рибозы и трех остатков фосфорной кислоты, в двух из которых запасается большое количество энергии. При отщеплении одного остатка фосфорной кислоты освобождается 40 кДж/моль энергии. Способность запасать такое количество энергии делает АТФ ее универсальным источником. Синтез АТФ происходит в основном в митохондриях.

Таблица. Функции нуклеотидов в клетке.

Таблица. Сравнительная характеристика ДНК и РНК.

Тематические задания.

Часть А

А1 . Мономерами ДНК и РНК являются
1) азотистые основания
2) фосфатные группы
3) аминокислоты
4) нуклеотиды

А2 . Функция информационной РНК:
1) удвоение информации
2) снятие информации с ДНК
3) транспорт аминокислот на рибосомы
4) хранение информации

А3 . Укажите вторую цепь ДНК, комплементарную первой: АТТ – ГЦЦ – ТТГ
1) УАА – ТГГ – ААЦ
3) УЦЦ – ГЦЦ – АЦГ
2) ТАА – ЦГГ – ААЦ
4) ТАА – УГГ – УУЦ

А4 . Подтверждением гипотезы, предполагающей, что ДНК является генетическим материалом клетки, служит:
1) количество нуклеотидов в молекуле
2) индивидуальность ДНК
3) соотношение азотистых оснований (А = Т, Г= Ц)
4) соотношение ДНК в гаметах и соматических клетках (1:2)

А5 . Молекула ДНК способна передавать информацию благодаря:
1) последовательности нуклеотидов
2) количеству нуклеотидов
3) способности к самоудвоению
4) спирализации молекулы

А6 . В каком случае правильно указан состав одного из нуклеотидов РНК
1) тимин – рибоза – фосфат
2) урацил – дезоксирибоза – фосфат
3) урацил – рибоза – фосфат
4) аденин – дезоксирибоза – фосфат

Часть В

В1 . Выберите признаки молекулы ДНК
1) Одноцепочная молекула
2) Нуклеотиды – АТУЦ
3) Нуклеотиды – АТГЦ
4) Углевод – рибоза
5) Углевод – дезоксирибоза
6) Способна к репликации

В2 . Выберите функции, характерные для молекул РНК эукариотических клеток
1) распределение наследственной информации
2) передача наследственной информации к месту синтеза белков
3) транспорт аминокислот к месту синтеза белков
4) инициирование репликации ДНК
5) формирование структуры рибосом
6) хранение наследственной информации

Часть С

С1 . Установление структуры ДНК позволило решить ряд проблем. Какие, по вашему мнению, это были проблемы и как они решились в результате этого открытия?
С2 . Сравните нуклеиновые кислоты по составу и свойствам.



Болезни собак